Hamiltonian Cayley Digraphs on Direct Products of Dihedral Groups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On isomorphisms of Cayley digraphs on dihedral groups

In this paper, we investigate m-DCI and m-CI properties of dihedral groups. We show that for any m E {I, 2, 3}, the dihedral group D2k is m-DCI if and only if D2k is m-CI if and only if 2 f k. § 1. Preliminaries Let G be a finite group and 5 a subset of G with 1 1:. 5. We use r = Cay( G; 5) to denote the Cayley digraph of G with respect to 5, defined to be the directed graph with vertex set and...

متن کامل

On Hamilton Circuits in Cayley Digraphs over Generalized Dihedral Groups

In this paper we prove that given a generalized dihedral group DH and a generating subset S, if S∩H 6= ∅ then the Cayley digraph → Cay(DH , S) is Hamiltonian. The proof we provide is via a recursive algorithm that produces a Hamilton circuit in the digraph.

متن کامل

On the eigenvalues of Cayley graphs on generalized dihedral groups

‎Let $Gamma$ be a graph with adjacency eigenvalues $lambda_1leqlambda_2leqldotsleqlambda_n$‎. ‎Then the energy of‎ ‎$Gamma$‎, ‎a concept defined in 1978 by Gutman‎, ‎is defined as $mathcal{E}(G)=sum_{i=1}^n|lambda_i|$‎. ‎Also‎ ‎the Estrada index of $Gamma$‎, ‎which is defined in 2000 by Ernesto Estrada‎, ‎is defined as $EE(Gamma)=sum_{i=1}^ne^{lambda_i}$‎. ‎In this paper‎, ‎we compute the eigen...

متن کامل

2-generated Cayley digraphs on nilpotent groups have hamiltonian paths

Suppose G is a nilpotent, finite group. We show that if {a, b} is any 2-element generating set of G, then the corresponding Cayley digraph −−→ Cay(G; a, b) has a hamiltonian path. This implies that all of the connected Cayley graphs of valence ≤ 4 on G have hamiltonian paths.

متن کامل

On endo-Cayley digraphs: The hamiltonian property

Given a finite abelian group A, a subset ⊆ A and an endomorphism of A, the endo-Cayley digraph GA( , ) is defined by taking A as the vertex set and making every vertex x adjacent to the vertices (x)+ a with a ∈ . When A is cyclic and the set is of the form = {e, e + h, . . . , e + (d − 1)h}, the digraph G is called a consecutive digraph. In this paper we study the hamiltonicity of endo-Cayley d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Open Journal of Discrete Mathematics

سال: 2012

ISSN: 2161-7635,2161-7643

DOI: 10.4236/ojdm.2012.23016